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1 Equations

Determining the zero set of a function f , that is, finding the elements x of
the domain where f becomes zero, means finding the solutions to the equation
f(x) = 0 in the variable x.

Determining the level sets, the elements in the domain where the map
assumes a given value k, means solving the equation f(x) = k, ie f(x)− k = 0.

More generally, the problem is of the following kind: given two maps f , g,
determine the elements x such that f(x) = g(x), or f(x) − g(x) = 0.

Definition 1.1 Two equations are called equivalent if every solution to the

former is a solution to the latter, and conversely, if every solution to the latter

also solves the former.

An equation transforms into an equivalent one by:

• adding or subtracting to both sides the same function defined over R;

• multiplying or dividing both sides by the same function defined over R

and non-zero.

Warning: if we add a function h(x) that is not defined everywhere on R,
the new equation might no longer be equivalent to the original one. Analogous
problems may arise with the multiplication.

For example: the equation x2 = 4 has two solutions x = 2 and x = −2; by
multiplying by 1

x−2 we lose the solution x = +2.

2 Inequalities

Determining where a map is positive, that is to say, finding the subset of the
domain where f(x) > 0, means solving the corresponding inequality.

In the same way one may find the set where the map is negative f (x) < 0,
non-negative f (x) ≥ 0, or non-positive f (x) ≤ 0.



Similarly to what we have seen for equalities, we may consider inequalities of
the type f(x) < g(x) or f(x) > g(x): the latter allows to determine the domain
elements for which the graph of f lies “above” the graph of g.

An inequality transforms into an equivalent one by adding or subtracting to
both sides the same function defined over R, or by multiplying or dividing both
sides by the same function defined over R and strictly positive.

Multiplying the inequality f(x) > g(x) by a map h(x) that is defined over
R and negative has the effect of producing the equivalent inequality f(x)h(x) <
g(x)h(x).

3 Equations and inequalities of degree 1

An equation of degree 1 has the form

ax+ b = 0,

where a and b are real numbers.
For a = 0 we have two cases:

• if b 6= 0, the equation has no solution and is called inconsistent ;

• if b = 0, the equation has infinitely many solutions, and is called indeter-

minate.

For a 6= 0 the solution is unique, namely x = − b
a
.

An inequality of degree 1 has the form

ax+ b > 0,

where a and b are real.
Excluding the trivial case a = 0, to study the inequality we have to distin-

guish the cases a > 0 and a < 0:

• if a > 0 the solutions are given by the set of x > − b
a
;

• if a < 0 the solutions are given by the set of x < − b
a
.

Example

The results obtained for the following equality and inequality are confirmed by
geometrical considerations:

2x− 3 = 0 ⇒ x = 3
2

2x− 3 > 0 ⇒ x > 3
2

The graph intersects the x-axis at x = 3
2 and is positive for x > 3

2 .
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4 Equations and inequalities of degree 2

An equation of degree 2 (a quadratic equation) is of the form

ax2 + bx+ c = 0,

where a, b, c are real numbers. When a = 0 the equation reduces to degree one,
so from now on we shall assume a 6= 0. Let’s consider a few special cases:

• if c = 0 the equation reads

ax2 + bx = 0 ⇒ x(ax + b) = 0,

which is solved by x1 = 0 and x2 = −b/a;

• if b = 0 the equation reads

ax2 + c = 0 ⇒ x2 = − c

a
,

solved by x1,2 = ±
√

− c
a
provided − c

a
≥ 0.

In general, to solve second-degree equations one has to compute the discri-
minant

∆ = b2 − 4ac.

Then

• if ∆ > 0 the equation has two distinct real solutions: x1,2 = −b±
√
∆

2a ;

• if ∆ = 0 the equation has two coinciding real solutions: x1 = x2 = − b
2a ;

• if ∆ < 0 the equation has no real solutions.
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Remark 4.1 In case ∆ ≥ 0 the following relationships hold between the solu-

tions x1 and x2 and the equation’s coefficients:

{

x1 · x2 = c/a
x1 + x2 = −b/a

4.1 Inequalities of degree 2

From the previous sheet we know the vertex of the parabola y = ax2 + bx+ c is
V = (− b

2a ;− ∆
4a ), and if a > 0 the graph is U-shaped (convex), while for a < 0

it is concave.

a > 0 a < 0

∆ > 0

∆ = 0

∆ < 0

The study of equations has taught us that ∆ > 0 forces the parabola to have
two zeroes (two intersections with the x-axis), ∆ = 0 implies the existence of
one double zero (the parabola is tangent to the axis at its vertex), and ∆ < 0
says the parabola doesn’t meet the x-axis.

These considerations hint at a general method for solving inequalities of
degree two like

ax2 + bx+ c > 0.

Given the solutions x1 and x2 to the corresponding equality, we have

• if a > 0 and ∆ > 0 the solutions are given by any x ∈ (−∞, x1)∪(x2,+∞);

• if a > 0 and ∆ = 0 the solutions are given by the set R \ {−b/2a};

• if a > 0 and ∆ < 0 the solutions are given by any x ∈ R;
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• if a < 0 and ∆ > 0 the solutions are given by the interval (x1, x2);

• if a < 0 and ∆ = 0 or ∆ < 0 there are no solutions.

The other inequality signs are dealt with in a similar way.

5 Fractional equations and inequalities

Consider the equation
f(x)

g(x)
= 0

defined where g(x) 6= 0.
To find its solutions it suffices to solve f(x) = 0, possibly excluding the

solutions such that g(x) is zero.
Recall that a fraction is positive when numerator and denominator are both

positive or both negative. Then, to solve

f(x)

g(x)
> 0

we must solve the systems
{

f(x) > 0
g(x) > 0

{

f(x) < 0
g(x) < 0

and take the union of the solution sets. The other signs are treated similarly.

5.1 Detailed examples

1. Let’s solve
x2 − 1

x− 3
≥ 0.

First of all we solve the equation
x2 − 1

x− 3
= 0, which amounts to solving

x2 − 1 = 0; then we must exclude the values that make the denominator
zero. The solutions to x2 − 1 = 0 are x1 = −1 and x2 = 1, both valid.

To solve
x2 − 1

x− 3
> 0, we need to understand the sign of f1(x) = x2 − 1

and of f2(x) = x−3; these maps have the same sign on (3,+∞) (positive)
and on (−1, 1) (negative).

Therefore we can say that the initial inequality holds on [−1, 1]∪ (3,+∞).

2. We solve
1− x2

x2 − 2x− 1
< 0.

Let’s consider the signs of g1(x) = 1− x2 and g2(x) = x2 − 2x− 1. These
maps have different sign on (−∞,−1), on (1−

√
2, 1) and on (1+

√
2,+∞).

The inequality’s solution is therefore given by the union of these three
intervals.
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6 Equations and inequalities with absolute

values

Given |f(x)| = c, there are three possibilities:

• c < 0 ⇒ no solution;

• c = 0 ⇒ the equation becomes f(x) = 0;

• c > 0 ⇒ the solution set is the union of the solutions of the two systems:

{

f(x) = c
f(x) ≥ 0

{

−f(x) = c
f(x) < 0

As far as inequalities are concerned, consider |f(x)| ≤ c. We have three
cases:

• c < 0 ⇒ no solution;

• c = 0 ⇒ the solutions are those of the equation f(x) = 0;

• c > 0 ⇒ the inequality is equivalent to −c ≤ f(x) ≤ c.

If, instead, we consider |f(x)| ≥ c, these are the possibilities:

• c ≤ 0 ⇒ the inequality is true for any x ∈ R;

• c > 0 ⇒ the solution set is the union of the solution sets of

f(x) ≥ c and f(x) ≤ −c

6.1 Detailed examples

1. We solve |x+ 3| = 1.

By the definition of absolute value we obtain the equations −x− 3 = 1, if
x < −3, and x+3 = 1, if x ≥ −3. Solving them, and bearing in mind the
restrictions, we get the solutions x1 = −4 and x2 = −2.

2. Let’s solve |x2 − 5x+ 6|+ x2 = 0.

We rewrite the equation as |x2 − 5x + 6| = −x2. The left-hand side is
positive or zero, whereas the right-hand side is negative or zero. They can
be equal only if both vanish. But this cannot happen, because the zeroes
of the left-hand side are x = 2, x = 3, while the term on the right is null
only at the origin. Hence the starting equation hasn’t got solutions.
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7 Irrational equations and inequalities

Consider an equation of the type

n

√

f(x) = m

√

g(x)

where f, g are given maps and n > 1, m ≥ 1.
It can be solved, assuming x ∈ domf ∩ domg, by raising to the right power.
Let’s see how through examples.

1. We wish to solve 3
√
x3 + 4− 1 = x.

Since there’s an odd root, the map’s domain is the whole R. First, we
must isolate the root to one side, 3

√
x3 + 4 = x + 1, and then raise to the

power 3,
(

3
√
x3 + 4

)3
= (x+ 1)3. A few computations yield the solutions

x1 = −1+
√
5

2 and x2 = −1−
√
5

2 .

2. Solve
√
2x− 1 = x− 2

Let’s impose that the radicand is non-negative, so x ≥ 1
2 . Notice that

the left-hand side is certainly non-negative, hence also the right side must
be so. This further implies x ≥ 2. Squaring both sides and solving the
quadratic equation produces x1 = 1 and x2 = 5, but only the latter is
valid because of the constraints.

3. Solve
√
x− 1 +

√
x+ 1 =

√
6− x.

The domain is the intersection of the domains of the three roots, that
is the interval [1, 6]. Squaring leads to 2

√

(x− 1) (x+ 1) = 6 − 3x. As
the right-hand side must be non-negative, we have x ≤ 2. Keeping the
previous constraint in mind, x must belong to [1,2]. Now we square once

more and get 4x2− 4 = 36− 36x+9x2, whose roots are x1 = 18−2
√
31

5 and

x2 = 18+2
√
31

5 . Only x1 is contained in [1, 2] and thus acceptable.

The study of irrational inequalities must be carried out with extreme care;
let’s look at

n

√

f(x) > m

√

g(x)

where f, g are given maps and n > 1, m ≥ 1.

• Odd roots

There are no problems with the domain; we just raise everything to the
suitable power. For instance, 3

√

f(x) > g(x) becomes f(x) > g(x)3.

• Even roots

Here we must mind the functions’ domains and the “hidden” constraints:
for instance,

√

f(x) < g(x)
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is equivalent to the system







f(x) ≥ 0
g(x) > 0

f(x) < (g (x))
2

.

The inequality
√

f(x) > g(x)

reduces to the two systems

{

f(x) ≥ 0
g(x) < 0

{

g(x) ≥ 0

f(x) > (g (x))
2 .

The required solution is the union of the solutions of these systems.

Explicitly, let’s solve
√
x− 1 > 12− 2x.

We need to consider only x ≥ 1. The inequality is clearly satisfied when the
right-hand side is negative, hence when x > 6. If x ≤ 6 we may square (both
sides are non-negative) to get x− 1 > 144+4x2− 48x, hence 4x2− 49x+145 <
0. The solution to the latter is given by the interval (5, 29/4); therefore, the
inequality holds on (5,+∞).
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8 EXERCISE - RATIONAL AND IRRATIONAL

EQUATIONS AND INEQUALITIES

True or false?

1. The equation 0x = 0 hasn’t got solutions. T F

2. The equation 0x = 1 doesn’t have solutions. T F

3. The solution to 5x− 3 = 0 is x = −2. T F

4. The solution to 4x = 0 is x = 1
4 . T F

5. The equation x(x2 + 1) = 0 has solution x = 0. T F

6. −5(x− 1)(x+ 3)(x2 + 10) = 0 is equivalent to

(x+ 1)(x+ 3) = 0. T F

7. The equation
(

x2 + 5
)2 (

x2 + 2
)2

= 0 has no rational

solutions. T F

8. x−4
2x−6 = 0 is solved by x = 4 and x = 3. T F

9. 1
x−2 = 3 is equivalent to x− 2 = 1

3 . T F

10. The discriminant of 3x2 − 5x+ 4 = 0 is negative. T F

11. |x| = 2 is equivalent to x2 = 4. T F

Exercise 1

Let f be a real map of one real variable. Tell which of the following statements
are equivalent to f(x) = 0:

1. f(x) + x = x

2. f(x) + 1
x2−3 = 1

x2−3

3. (x2 − 1)f(x) = 0

4. (x2 + 1)f(x) = 0

5. f2(x) = 0

6. f(x)− x2 = x4

7. f(x)
x4+1 = 0

8. f(x)
x−3 = 0
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Exercise 2

Given real maps f and g defined on R, say which inequalities are equivalent to
f(x) < g(x):

1. f(x) + g(x) > 0

2. f(x)g(x) < 0

3. 2− g(x) < 2− f(x)

4. (1 + x2)f(x) < (1 + x2)g(x)

5.
(

x2 − 1
)

g(x) >
(

x2 − 1
)

f(x)

6.
f(x)
x+ 3 <

g(x)
x+ 3

7. f(x)g(x) < (g (x))2

8. (f (x))
2
< (g (x))

2

Exercise 3

Consider the four graphs of the map f below, one at a time. Tell if the equation
f(x) = k satisfies the following properties (if any):

1. there’s no solution, whichever k ∈ R;

2. for some value k ∈ R there’s no solution;

3. for every k ∈ R there’s exactly one solution;

4. for some k ∈ R there are at least two solutions;

5. there isn’t any solution when k = −3, and three solutions when k = 2;

6. for all k ∈ R there are two solutions.

(a)

x

13
5

− 3
5

1

(b)

x

−2

(c)

x

−1

1

(d)

x

−1
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Exercise 4

Solve and interpret geometrically the following equations:

1. −3x+ 7 = 2x+ 3
4

2. 3
2x− 5 = 2(1− x)

3. 2
3x− 1 =

(

− 3
2

)

x+ 25

4. 2x+ 3 = 2x− 5

5. x+2
1+ 1

3

= x−2
1− 1

3

6. x2 − 2 = |x|

Exercise 5

Solve and interpret geometrically the following inequalities:

1. x+ 1
3 < − 2

3x+ 1
2

2. 1
5x+ 1

2 < 2x−1
5− 1

2

3. 3x+ 1
3 < 3x+ 2

4. −x− 3 >
− 5

4
x+3

3

4
+ 1

2

Exercise 6

Solve on R the following equations of degree two, providing a geometric expla-
nation based only on the graphs of the maps appearing on either side:

1. x2 − 2x+ 3 = 2x

2. x2 − 8x+ 1
2 = −x2 + 8x− 1

2

3. x2 + 4x− 2
3 = x2 − 3x+ 1

4. 2x2 − 4x+ 3 = −3x2 + 12x− 13

Exercise 7

Choose values for the coefficients a, b, c of f(x) = ax2 + bx + c so that the set
where f is positive is:

1. R

2. (-2,3)

3. ∅;

4. (−∞, 1) ∪ (5,∞)

5. (−∞, 2) ∪ (2,∞)

Exercise 8

Solve the following inequalities:
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1. x2 + 5x+ 4
x4 + 1

> 0

2. x3 + 8
x2 − 1

> 0

3. x− 2
|2x+ 1| > −1

3x

4.
|x− 1|
|3x+ 1| ≤ 1

Exercise 9

Solve the following inequalities and interpret them geometrically:

1. |x+ 2| = 1

2. |x+ 5| = −1

3. |x− 1|+ |2x+ 1| = 10

4.
∣

∣x2 − 1
∣

∣−
∣

∣x2 − 5
∣

∣ = 3

Exercise 10

Tell under which conditions the roots are well defined, and transform them into
roots of the same index:

1.
√
a,

12
√
a5,

4
√
a3 2. 3

√
x− y, 5

√
x+ y, 4

√

x2 − y2

Exercise 11

Rationalize1 the following expressions:

1. 5
3
√
54

2. 1
3−

√
2 3. 1−

√
π + 1

1 +
√
π + 1

4. 3
√
2

2
√
3− 3

√
2
5. 2

3
√
5− 3

√
3

Exercise 12

Solve the following irrational inequalities and equations:

1. 2
√
x− 1− x = 0

2.
√
x+ 3 = 1− 3x

3.
√
2x+ 6− x+ 1 = 0

4. 3
√
x+ 2− x− 4 = 0

5. 3
√
x+ 4 = 3

6.
√
x− 1−

√
2x− 3 = 0

7.
√
5x− 6 > x

8.
√
x+ 2 +

√
3x− 1 > 0

9.
√

x−4
x+2 < 2

Exercise 13

Discuss using graphs:

1Rationalizing means getting rid of a root appearing in a denominator by multiplying and
dividing the ratio simultaneously by a suitable factor. For instance, 3/

√

2 can be rationalized
if we multiply and divide by

√

2, while 3/(
√

7−

√

2) gets rationalized by using the factor
√

7 +
√

2.
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1.
√
x+ 1 ≥ x− 3

2.
√
x− 2 > −1

3.
√
−x− 1 > 0

4.
√
x+ 5 ≥ 2

Exercise 14

Determine domain and positivity set for:

1. f(x) =
√
x− 2 + 1

2. f(x) =
√
x+ 3 +

√
x2 + 9

3. f(x) = 3
√
x2 − 1

4. f(x) = 3
√
x− 1 + 3

√
x− 2

5. f(x) =
√
x−1√
|x|−2

6. f(x) = 3
√
x+ 2−

√
x+ 2

7. f(x) =
√
x−5+

√
2x+1

3
√
1−x

8. f(x) = 4
√
x4 − 1− x2

9. f(x) =
√
x−1

√
x+2√

6x2+x−2
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9 SOLUTIONS

True or false?

True: 2, 5, 7, 9, 10, 11

Exercise 1

Equivalent: 1, 4, 5, 7

Exercise 2

Equivalent: 3, 4

Exercise 3

1. none

2. (a), (c), (d)

3. (b)

4. (a), (c), (d)

5. (a)

6. none

Exercise 4

1. 5
4

2. 2

3. 12

4. ∅

5. 6

6. {−2, 2}

Exercise 5

1. (−∞, 1
10)

2. (6522 ,+∞)

3. R

4. ∅

Exercise 7

1. a > 0, ∆ < 0 (eg a = 1, b = 0,
c = 1)

2. a = −1, b = 1, c = 6 (more gene-
rally, a = −y, b = y, c = 6y with
y > 0)

3. a < 0, ∆ ≤ 0 (for example a =
−1, b = 0, c = −1)

4. a = 1, b = −6, c = 5 (more ge-
nerally, a = y, b = −6y, c = 5y
with y > 0)

5. a = 1, b = −4, c = 4 (more ge-
nerally, a = y, b = −4y, c = 4y
with y > 0)

Exercise 8

1. (−∞,−4) ∪ (−1,+∞)

2. (−2,−1) ∪ (1,+∞)

3. (1,+∞)

4. (−∞,−1] ∪ [0,+∞)

Exercise 9

1. {−3,−1}

2. ∅

3. {−10/3, 10/3}

4. {−3
√
2
2 , 3

√
2
2 }

Exercise 10

1. All defined for a ≥ 0,
12
√
a6.

12
√
a5,

12
√
a9

2. Defined for ∀x, y ∈ R, ∀x, y ∈ R,
{−|x| ≤ y ≤ |x|}. 60

√

(x − y)20,
60

√

(x + y)12, 60

√

(x2 − y2)15 re-
spectively.
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Exercise 11

1. 5
3
√
542
54

2. 3 +
√
2

7

3. 2
√
π + 1− π − 2

π

4. −3−
√
6

5. 3
√
25 + 3

√
15 + 3

√
9

Exercise 12

1. 2

2. −2/9

3. 5

4. −1, 2

5. 23

6. 2

7. (2, 3)

8. [13 ,+∞)

9. [−∞,−4) ∪ [4,+∞)

Exercise 14

The domains and positivity sets are,
respectively:

1. [2,+∞), [2,+∞)

2. [−3,+∞), [−3,+∞)

3. R, (−∞,−1) ∪ (1,+∞)

4. R, (32 ,+∞)

5. [0, 4) ∪ (4,+∞), [0, 1) ∪ (4,+∞)

6. [−2,+∞), [−2,−1)

7. [5,+∞), ∅

8. (−∞,−1] ∪ [1,+∞), ∅

9. [1,+∞), (1,+∞)
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