

1 Equations

Determining the zero set of a function f, that is, finding the elements x of the domain where f becomes zero, means finding the solutions to the equation f(x) = 0 in the variable x.

Determining the *level sets*, the elements in the domain where the map assumes a given value k, means solving the equation f(x) = k, ie f(x) - k = 0.

More generally, the problem is of the following kind: given two maps f, g, determine the elements x such that f(x) = g(x), or f(x) - g(x) = 0.

Definition 1.1 Two equations are called **equivalent** if every solution to the former is a solution to the latter, and conversely, if every solution to the latter also solves the former.

An equation transforms into an equivalent one by:

- adding or subtracting to both sides the same function defined over \mathbb{R} ;
- multiplying or dividing both sides by the same function defined over \mathbb{R} and non-zero.

Warning: if we add a function h(x) that is not defined everywhere on \mathbb{R} , the new equation might no longer be equivalent to the original one. Analogous problems may arise with the multiplication.

For example: the equation $x^2 = 4$ has two solutions x = 2 and x = -2; by multiplying by $\frac{1}{x-2}$ we lose the solution x = +2.

2 INEQUALITIES

Determining where a map is positive, that is to say, finding the subset of the domain where f(x) > 0, means solving the corresponding inequality.

In the same way one may find the set where the map is negative f(x) < 0, non-negative $f(x) \ge 0$, or non-positive $f(x) \le 0$.

Similarly to what we have seen for equalities, we may consider inequalities of the type f(x) < g(x) or f(x) > g(x): the latter allows to determine the domain elements for which the graph of f lies "above" the graph of g.

An inequality transforms into an equivalent one by adding or subtracting to both sides the same function defined over \mathbb{R} , or by multiplying or dividing both sides by the same function defined over \mathbb{R} and strictly positive.

Multiplying the inequality f(x) > g(x) by a map h(x) that is defined over \mathbb{R} and negative has the effect of producing the equivalent inequality f(x)h(x) < g(x)h(x).

3 Equations and inequalities of degree 1

An equation of degree 1 has the form

ax + b = 0,

where a and b are real numbers.

For a = 0 we have two cases:

- if $b \neq 0$, the equation has no solution and is called *inconsistent*;
- if b = 0, the equation has infinitely many solutions, and is called *indeterminate*.

For $a \neq 0$ the solution is unique, namely $x = -\frac{b}{a}$.

An inequality of degree 1 has the form

$$ax + b > 0,$$

where a and b are real.

Excluding the trivial case a = 0, to study the inequality we have to distinguish the cases a > 0 and a < 0:

- if a > 0 the solutions are given by the set of $x > -\frac{b}{a}$;
- if a < 0 the solutions are given by the set of $x < -\frac{b}{a}$.

EXAMPLE

The results obtained for the following equality and inequality are confirmed by geometrical considerations:

$$2x - 3 = 0 \quad \Rightarrow \quad x = \frac{3}{2}$$
$$2x - 3 > 0 \quad \Rightarrow \quad x > \frac{3}{2}$$

The graph intersects the x-axis at $x = \frac{3}{2}$ and is positive for $x > \frac{3}{2}$.

4 Equations and inequalities of degree 2

An equation of degree 2 (a quadratic equation) is of the form

$$ax^2 + bx + c = 0,$$

where a, b, c are real numbers. When a = 0 the equation reduces to degree one, so from now on we shall assume $a \neq 0$. Let's consider a few special cases:

• if c = 0 the equation reads

$$ax^2 + bx = 0 \Rightarrow x(ax + b) = 0,$$

which is solved by $x_1 = 0$ and $x_2 = -b/a$;

• if b = 0 the equation reads

$$ax^2 + c = 0 \Rightarrow x^2 = -\frac{c}{a},$$

solved by $x_{1,2} = \pm \sqrt{-\frac{c}{a}}$ provided $-\frac{c}{a} \ge 0$.

In general, to solve second-degree equations one has to compute the discriminant

$$\Delta = b^2 - 4ac.$$

Then

• if $\Delta > 0$ the equation has two distinct real solutions: $x_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a}$;

3

- if $\Delta = 0$ the equation has two coinciding real solutions: $x_1 = x_2 = -\frac{b}{2a}$;
- if $\Delta < 0$ the equation has no real solutions.

Remark 4.1 In case $\Delta \ge 0$ the following relationships hold between the solutions x_1 and x_2 and the equation's coefficients:

$$\begin{cases} x_1 \cdot x_2 = c/a \\ x_1 + x_2 = -b/a \end{cases}$$

4.1 Inequalities of degree 2

From the previous sheet we know the vertex of the parabola $y = ax^2 + bx + c$ is $V = \left(-\frac{b}{2a}; -\frac{\Delta}{4a}\right)$, and if a > 0 the graph is U-shaped (convex), while for a < 0 it is concave.

The study of equations has taught us that $\Delta > 0$ forces the parabola to have two zeroes (two intersections with the *x*-axis), $\Delta = 0$ implies the existence of one double zero (the parabola is tangent to the axis at its vertex), and $\Delta < 0$ says the parabola doesn't meet the *x*-axis.

These considerations hint at a general method for solving inequalities of degree two like

$$ax^2 + bx + c > 0.$$

Given the solutions x_1 and x_2 to the corresponding equality, we have

- if a > 0 and $\Delta > 0$ the solutions are given by any $x \in (-\infty, x_1) \cup (x_2, +\infty)$;
- if a > 0 and $\Delta = 0$ the solutions are given by the set $\mathbb{R} \setminus \{-b/2a\}$;

4

• if a > 0 and $\Delta < 0$ the solutions are given by any $x \in \mathbb{R}$;

©Politecnico di Torino

Bridging course in mathematics

- if a < 0 and $\Delta > 0$ the solutions are given by the interval (x_1, x_2) ;
- if a < 0 and $\Delta = 0$ or $\Delta < 0$ there are no solutions.

The other inequality signs are dealt with in a similar way.

5 FRACTIONAL EQUATIONS AND INEQUALITIES

Consider the equation

$$\frac{f(x)}{g(x)} = 0$$

defined where $g(x) \neq 0$.

To find its solutions it suffices to solve f(x) = 0, possibly excluding the solutions such that g(x) is zero.

Recall that a fraction is positive when numerator and denominator are both positive or both negative. Then, to solve

$$\frac{f(x)}{g(x)} > 0$$

we must solve the systems

$$\left\{ \begin{array}{l} f(x) > 0 \\ g(x) > 0 \end{array} \right. \left. \left\{ \begin{array}{l} f(x) < 0 \\ g(x) < 0 \end{array} \right. \right. \right.$$

and take the union of the solution sets. The other signs are treated similarly.

5.1 Detailed examples

1. Let's solve
$$\frac{x^2 - 1}{x - 3} \ge 0$$
.

First of all we solve the equation $\frac{x^2-1}{x-3} = 0$, which amounts to solving $x^2 - 1 = 0$; then we must exclude the values that make the denominator zero. The solutions to $x^2 - 1 = 0$ are $x_1 = -1$ and $x_2 = 1$, both valid.

To solve $\frac{x^2-1}{x-3} > 0$, we need to understand the sign of $f_1(x) = x^2 - 1$ and of $f_2(x) = x - 3$; these maps have the same sign on $(3, +\infty)$ (positive) and on (-1, 1) (negative).

Therefore we can say that the initial inequality holds on $[-1, 1] \cup (3, +\infty)$.

2. We solve $\frac{1-x^2}{x^2-2x-1} < 0.$

Let's consider the signs of $g_1(x) = 1 - x^2$ and $g_2(x) = x^2 - 2x - 1$. These maps have different sign on $(-\infty, -1)$, on $(1 - \sqrt{2}, 1)$ and on $(1 + \sqrt{2}, +\infty)$. The inequality's solution is therefore given by the union of these three intervals.

5

6 Equations and inequalities with absolute values

Given |f(x)| = c, there are three possibilities:

- $c < 0 \Rightarrow$ no solution;
- $c = 0 \Rightarrow$ the equation becomes f(x) = 0;
- $c > 0 \Rightarrow$ the solution set is the union of the solutions of the two systems:

$$\left\{ \begin{array}{l} f(x) = c \\ f(x) \geq 0 \end{array} \right. \qquad \left\{ \begin{array}{l} -f(x) = c \\ f(x) < 0 \end{array} \right.$$

As far as inequalities are concerned, consider $|f(x)| \leq c$. We have three cases:

- $c < 0 \Rightarrow$ no solution;
- $c = 0 \Rightarrow$ the solutions are those of the equation f(x) = 0;
- $c > 0 \Rightarrow$ the inequality is equivalent to $-c \le f(x) \le c$.

If, instead, we consider $|f(x)| \ge c$, these are the possibilities:

- $c \leq 0 \Rightarrow$ the inequality is true for any $x \in \mathbb{R}$;
- $c > 0 \Rightarrow$ the solution set is the union of the solution sets of

 $f(x) \ge c$ and $f(x) \le -c$

6.1 Detailed examples

1. We solve |x+3| = 1.

By the definition of absolute value we obtain the equations -x - 3 = 1, if x < -3, and x + 3 = 1, if $x \ge -3$. Solving them, and bearing in mind the restrictions, we get the solutions $x_1 = -4$ and $x_2 = -2$.

2. Let's solve $|x^2 - 5x + 6| + x^2 = 0$.

We rewrite the equation as $|x^2 - 5x + 6| = -x^2$. The left-hand side is positive or zero, whereas the right-hand side is negative or zero. They can be equal only if both vanish. But this cannot happen, because the zeroes of the left-hand side are x = 2, x = 3, while the term on the right is null only at the origin. Hence the starting equation hasn't got solutions. Consider an equation of the type

$$\sqrt[n]{f(x)} = \sqrt[m]{g(x)}$$

where f, g are given maps and n > 1, $m \ge 1$.

It can be solved, assuming $x \in \text{dom} f \cap \text{dom} g$, by raising to the right power. Let's see how through examples.

1. We wish to solve $\sqrt[3]{x^3+4} - 1 = x$.

Since there's an odd root, the map's domain is the whole \mathbb{R} . First, we must isolate the root to one side, $\sqrt[3]{x^3+4} = x+1$, and then raise to the power 3, $(\sqrt[3]{x^3+4})^3 = (x+1)^3$. A few computations yield the solutions $x_1 = \frac{-1+\sqrt{5}}{2}$ and $x_2 = \frac{-1-\sqrt{5}}{2}$.

2. Solve $\sqrt{2x-1} = x-2$

Let's impose that the radicand is non-negative, so $x \ge \frac{1}{2}$. Notice that the left-hand side is certainly non-negative, hence also the right side must be so. This further implies $x \ge 2$. Squaring both sides and solving the quadratic equation produces $x_1 = 1$ and $x_2 = 5$, but only the latter is valid because of the constraints.

3. Solve $\sqrt{x-1} + \sqrt{x+1} = \sqrt{6-x}$.

The domain is the intersection of the domains of the three roots, that is the interval [1,6]. Squaring leads to $2\sqrt{(x-1)(x+1)} = 6 - 3x$. As the right-hand side must be non-negative, we have $x \leq 2$. Keeping the previous constraint in mind, x must belong to [1,2]. Now we square once more and get $4x^2 - 4 = 36 - 36x + 9x^2$, whose roots are $x_1 = \frac{18 - 2\sqrt{31}}{5}$ and $x_2 = \frac{18 + 2\sqrt{31}}{5}$. Only x_1 is contained in [1, 2] and thus acceptable.

The study of irrational inequalities must be carried out with extreme care; let's look at

$$\sqrt[n]{f(x)} > \sqrt[m]{g(x)}$$

where f, g are given maps and n > 1, $m \ge 1$.

• Odd roots

There are no problems with the domain; we just raise everything to the suitable power. For instance, $\sqrt[3]{f(x)} > g(x)$ becomes $f(x) > g(x)^3$.

• Even roots

Here we must mind the functions' domains and the "hidden" constraints: for instance,

$$\sqrt{f(x)} < g(x)$$

7

©Politecnico di Torino

Bridging course in mathematics

is equivalent to the system

$$\begin{cases} f(x) \ge 0\\ g(x) > 0\\ f(x) < (g(x))^2 \end{cases}$$

The inequality

$$\sqrt{f(x)} > g(x)$$

reduces to the two systems

$$\begin{cases} f(x) \ge 0 \\ g(x) < 0 \end{cases} \begin{cases} g(x) \ge 0 \\ f(x) > (g(x))^2 \end{cases}$$

The required solution is the union of the solutions of these systems.

Explicitly, let's solve $\sqrt{x-1} > 12 - 2x$.

We need to consider only $x \ge 1$. The inequality is clearly satisfied when the right-hand side is negative, hence when x > 6. If $x \le 6$ we may square (both sides are non-negative) to get $x - 1 > 144 + 4x^2 - 48x$, hence $4x^2 - 49x + 145 < 0$. The solution to the latter is given by the interval (5, 29/4); therefore, the inequality holds on $(5, +\infty)$.

8 EXERCISE - RATIONAL AND IRRATIONAL EQUATIONS AND INEQUALITIES

TRUE OR FALSE?

1. The equation $0x = 0$ hasn't got solutions.	Т	\mathbf{F}
2. The equation $0x = 1$ doesn't have solutions.	Т	\mathbf{F}
3. The solution to $5x - 3 = 0$ is $x = -2$.	Т	\mathbf{F}
4. The solution to $4x = 0$ is $x = \frac{1}{4}$.	Т	\mathbf{F}
5. The equation $x(x^2 + 1) = 0$ has solution $x = 0$.	Т	\mathbf{F}
6. $-5(x-1)(x+3)(x^2+10) = 0$ is equivalent to (x+1)(x+3) = 0.	Т	F
7. The equation $(x^2 + 5)^2 (x^2 + 2)^2 = 0$ has no rational solutions.	Т	F
8. $\frac{x-4}{2x-6} = 0$ is solved by $x = 4$ and $x = 3$.	Т	\mathbf{F}
9. $\frac{1}{x-2} = 3$ is equivalent to $x - 2 = \frac{1}{3}$.	Т	\mathbf{F}
10. The discriminant of $3x^2 - 5x + 4 = 0$ is negative.	Т	\mathbf{F}
11. $ x = 2$ is equivalent to $x^2 = 4$.	Т	\mathbf{F}

EXERCISE 1

Let f be a real map of one real variable. Tell which of the following statements are equivalent to f(x) = 0:

9

1. $f(x) + x = x$	5. $f^2(x) = 0$
2. $f(x) + \frac{1}{x^2 - 3} = \frac{1}{x^2 - 3}$	6. $f(x) - x^2 = x^4$
3. $(x^2 - 1)f(x) = 0$	7. $\frac{f(x)}{x^4+1} = 0$
4. $(x^2 + 1)f(x) = 0$	8. $\frac{f(x)}{x-3} = 0$

EXERCISE 2

Given real maps f and g defined on \mathbb{R} , say which inequalities are equivalent to f(x) < g(x):

1. f(x) + g(x) > 02. f(x)g(x) < 03. 2 - g(x) < 2 - f(x)4. $(1 + x^2)f(x) < (1 + x^2)g(x)$ 5. $(x^2 - 1)g(x) > (x^2 - 1)f(x)$ 6. $\frac{f(x)}{x + 3} < \frac{g(x)}{x + 3}$ 7. $f(x)g(x) < (g(x))^2$ 8. $(f(x))^2 < (g(x))^2$

Exercise 3

Consider the four graphs of the map f below, one at a time. Tell if the equation f(x) = k satisfies the following properties (if any):

- 1. there's no solution, whichever $k \in \mathbb{R}$;
- 2. for some value $k \in \mathbb{R}$ there's no solution;
- 3. for every $k \in \mathbb{R}$ there's exactly one solution;
- 4. for some $k \in \mathbb{R}$ there are at least two solutions;
- 5. there isn't any solution when k = -3, and three solutions when k = 2;
- 6. for all $k \in \mathbb{R}$ there are two solutions.

10

©Politecnico di Torino

Bridging course in mathematics

EXERCISE 4

Solve and interpret geometrically the following equations:

1. $-3x + 7 = 2x + \frac{3}{4}$	4. $2x + 3 = 2x - 5$
2. $\frac{3}{2}x - 5 = 2(1 - x)$	5. $\frac{x+2}{1+\frac{1}{3}} = \frac{x-2}{1-\frac{1}{3}}$
3. $\frac{2}{3}x - 1 = \left(-\frac{3}{2}\right)x + 25$	6. $x^2 - 2 = x $

EXERCISE 5

Solve and interpret geometrically the following inequalities:

1. $x + \frac{1}{3} < -\frac{2}{3}x + \frac{1}{2}$	3. $3x + \frac{1}{3} < 3x + 2$
2. $\frac{1}{5}x + \frac{1}{2} < \frac{2x-1}{5-\frac{1}{2}}$	4. $-x - 3 > \frac{-\frac{5}{4}x + 3}{\frac{3}{4} + \frac{1}{2}}$

EXERCISE 6

Solve on \mathbb{R} the following equations of degree two, providing a geometric explanation based *only* on the graphs of the maps appearing on either side:

1. $x^2 - 2x + 3 = 2x$ 2. $x^2 - 8x + \frac{1}{2} = -x^2 + 8x - \frac{1}{2}$ 3. $x^2 + 4x - \frac{2}{3} = x^2 - 3x + 1$ 4. $2x^2 - 4x + 3 = -3x^2 + 12x - 13$

EXERCISE 7

Choose values for the coefficients a, b, c of $f(x) = ax^2 + bx + c$ so that the set where f is positive is:

11

1. \mathbb{R} 2. (-2,3) 3. \emptyset ; 4. (- ∞ , 1) \cup (5, ∞) 5. (- ∞ , 2) \cup (2, ∞)

EXERCISE 8

Solve the following inequalities:

1.
$$\frac{x^2 + 5x + 4}{x^4 + 1} > 0$$

2. $\frac{x^3 + 8}{x^2 - 1} > 0$
3. $\frac{x - 2}{|2x + 1|} > -\frac{1}{3}x$
4. $\frac{|x - 1|}{|3x + 1|} \le 1$

Exercise 9

Solve the following inequalities and interpret them geometrically:

 1. |x+2| = 1 3. |x-1| + |2x+1| = 10

 2. |x+5| = -1 4. $|x^2-1| - |x^2-5| = 3$

EXERCISE 10

Tell under which conditions the roots are well defined, and transform them into roots of the same index:

1.
$$\sqrt{a}, \sqrt[12]{a^5}, \sqrt[4]{a^3}$$
 2. $\sqrt[3]{x-y}, \sqrt[5]{x+y}, \sqrt[4]{x^2-y^2}$

Exercise 11

Rationalize¹ the following expressions:

1.
$$\frac{5}{\sqrt[3]{54}}$$
 2. $\frac{1}{3-\sqrt{2}}$ 3. $\frac{1-\sqrt{\pi+1}}{1+\sqrt{\pi+1}}$ 4. $\frac{3\sqrt{2}}{2\sqrt{3}-3\sqrt{2}}$ 5. $\frac{2}{\sqrt[3]{5}-\sqrt[3]{3}}$

EXERCISE 12

Solve the following irrational inequalities and equations:

1. $2\sqrt{x-1} - x = 0$	6. $\sqrt{x-1} - \sqrt{2x-3} = 0$
2. $\sqrt{x+3} = 1 - 3x$	7. $\sqrt{5x-6} > x$
3. $\sqrt{2x+6} - x + 1 = 0$	8. $\sqrt{x+2} + \sqrt{3x-1} > 0$
4. $3\sqrt{x+2} - x - 4 = 0$	$0. \ \sqrt{x+2} + \sqrt{3x-1} > 0$
5. $\sqrt[3]{x+4} = 3$	9. $\sqrt{\frac{x-4}{x+2}} < 2$

EXERCISE 13

Discuss using graphs:

12

¹*Rationalizing* means getting rid of a root appearing in a denominator by multiplying and dividing the ratio simultaneously by a suitable factor. For instance, $3/\sqrt{2}$ can be rationalized if we multiply and divide by $\sqrt{2}$, while $3/(\sqrt{7} - \sqrt{2})$ gets rationalized by using the factor $\sqrt{7} + \sqrt{2}$.

1.
$$\sqrt{x+1} \ge x-3$$
3. $\sqrt{-x-1} > 0$ 2. $\sqrt{x-2} > -1$ 4. $\sqrt{x+5} \ge 2$

Exercise 14

Determine domain and positivity set for:

1. $f(x) = \sqrt{x-2} + 1$ 2. $f(x) = \sqrt{x+3} + \sqrt{x^2 + 9}$ 3. $f(x) = \sqrt[3]{x^2 - 1}$ 4. $f(x) = \sqrt[3]{x - 1} + \sqrt[3]{x - 2}$ 5. $f(x) = \frac{\sqrt{x-1}}{\sqrt{|x|-2}}$ 6. $f(x) = \sqrt[3]{x + 2} - \sqrt{x + 2}$ 7. $f(x) = \frac{\sqrt{x-5} + \sqrt{2x+1}}{\sqrt[3]{1-x}}$ 8. $f(x) = \sqrt[4]{x^4 - 1} - x^2$ 9. $f(x) = \frac{\sqrt{x-1}\sqrt{x+2}}{\sqrt{6x^2 + x-2}}$

©Politecnico di Torino

13

9 SOLUTIONS

True or false?

True: 2, 5, 7, 9, 10, 11

Exercise 1

Equivalent: 1, 4, 5, 7

EXERCISE 2

Equivalent: 3, 4

Exercise 3

- 1. none
- 2. (a), (c), (d)
- 3. (b)
- 4. (a), (c), (d)
- 5. (a)
- 6. none

EXERCISE 4

- 1. $\frac{5}{4}$ 2. 2 3. 12 4. \emptyset 5. 6 6. $\{-2, 2\}$ EXERCISE 5 1. $(-\infty, \frac{1}{10})$ 2. $(\frac{65}{22}, +\infty)$
 - 3. ℝ 4. Ø

Exercise 7

- 1. $a > 0, \Delta < 0$ (eg a = 1, b = 0, c = 1)
- 2. a = -1, b = 1, c = 6 (more generally, a = -y, b = y, c = 6y with y > 0)
- 3. $a < 0, \Delta \leq 0$ (for example a = -1, b = 0, c = -1)
- 4. a = 1, b = -6, c = 5 (more generally, a = y, b = -6y, c = 5ywith y > 0)
- 5. a = 1, b = -4, c = 4 (more generally, a = y, b = -4y, c = 4ywith y > 0)

EXERCISE 8

1.
$$(-\infty, -4) \cup (-1, +\infty)$$

2. $(-2, -1) \cup (1, +\infty)$
3. $(1, +\infty)$
4. $(-\infty, -1] \cup [0, +\infty)$
EXERCISE 9

1.
$$\{-3, -1\}$$

2. \emptyset

3.
$$\{-10/3, 10/3\}$$

$$4. \ \left\{-3\frac{\sqrt{2}}{2}, 3\frac{\sqrt{2}}{2}\right\}$$

Exercise 10

1. All defined for $a \ge 0$, $\sqrt[12]{a^6}$. $\sqrt[12]{a^5}$, $\sqrt[12]{a^9}$

}

2. Defined for $\forall x, y \in \mathbb{R}, \forall x, y \in \mathbb{R}, \{-|x| \leq y \leq |x|\}$. $\sqrt[60]{(x-y)^{20}}, \sqrt[60]{(x+y)^{12}}, \sqrt[60]{(x^2-y^2)^{15}}$ respectively.

Exercise 11	8. $[\frac{1}{3}, +\infty)$
1. $\frac{5\sqrt[3]{54^2}}{54}$	9. $[-\infty, -4) \cup [4, +\infty)$
2. $\frac{3+\sqrt{2}}{7}$	Exercise 14
3. $\frac{2\sqrt{\pi+1}-\pi-2}{\pi}$	The domains and positivity sets are, respectively:
4. $-3 - \sqrt{6}$	1. $[2, +\infty), [2, +\infty)$
5. $\sqrt[3]{25} + \sqrt[3]{15} + \sqrt[3]{9}$	2. $[-3, +\infty), [-3, +\infty)$
Exercise 12	3. $\mathbb{R}, (-\infty, -1) \cup (1, +\infty)$
1. 2	4. $\mathbb{R}, (\frac{3}{2}, +\infty)$
2. $-2/9$	
3. 5	5. $[0,4) \cup (4,+\infty), [0,1) \cup (4,+\infty)$
41, 2	6. $[-2, +\infty), [-2, -1)$
5. 23	7. $[5, +\infty), \emptyset$
6. 2	8. $(-\infty, -1] \cup [1, +\infty), \emptyset$
7. $(2,3)$	9. $[1, +\infty), (1, +\infty)$