Exponentials and logarithms

Bridging course in mathematics

Lesson 4

Outline

- **o** [Graph](#page-3-0)
- **•** [Properties](#page-4-0)

[The logarithm function](#page-5-0)

- **•** [Graph](#page-7-0)
- **•** [Properties](#page-8-0)

The exponential map

Given a real number a > 0, one calls **exponential map in base a** the function

$$
x\mapsto a^x
$$

Domain and range

The exponential map $x\mapsto a^x$ has

- \bullet domain $\mathbb R$
- range $(0, +\infty)$

Recall

• for every
$$
a > 0
$$
 and any $x, y \in \mathbb{R}$
 $a^0 = 1$ $a^1 = a$ $a^{-1} = \frac{1}{a}$ $a^{x+y} = a^x a^y$ $(a^x)^y = a^{xy}$

if $a = 1$, the map is constant: $1^x = 1$

- The graph passes through the points $(0, 1)$ and $(1, a)$ \bullet
- If $a > 1$, the function $x \mapsto a^x$ is positive and increasing
- If $a < 1$, the function $x \mapsto a^x$ is positive and decreasing

Bases

• The graph of the exponential map in base a is symmetric to the graph in base $1/a$ with respect to the y-axis

$$
y(x) = \left(\frac{1}{a}\right)^x = a^{-x}
$$

A special function

A central role is played by the exponential map in base **e**

$$
\bm{y}=\bm{e}^{\bm{x}}
$$

As $e \approx 2.718$, the exponential in base e has an intermediate behaviour between the exponentials in base 2 and 3

Inversion

Given $f(x) = a^x$ with real $a > 0$, and the positive real number y_0 , consider the equation $a^x=y_0$

Cases

 $a = 1$

the equation is solved by any real number if $y_0 = 1$, while it has no solution for $y_0 \neq 1$

• $a \neq 1$

for any $y_0 > 0$ the equation has one, and only one, solution x_0 . called the **logarithm in base** a of y_0

The second case defines, for any $y_0 \in (0, \infty)$, a function:

 $y_0 \mapsto \log_a y_0$

The logarithm function

Given a real number $a > 0$, $a \neq 1$, one calls **logarithm in base a** the map

 $x \mapsto \log_a x$

Domain and range

The logarithm $y = \log_a x$ has

- \bullet domain $(0,+\infty)$
- \bullet range $\mathbb R$

A special function

Choosing **e** as base defines the so-called natural logarithm, which is customarily denoted by

 $v = \ln x$

- The graph passes through the points $(1,0)$, $(a,1)$, $\left(\frac{1}{a},-1\right)$ \bullet
- \bullet If $a > 1$ the map is increasing, negative on (0, 1), positive on (1, ∞)
- If $a < 1$ the map is decreasing, positive on $(0, 1)$, negative on $(1, \infty)$ \bullet

Consider positive reals $a \neq 1$, x, y, and let z be another given real

- $\log_a xy = \log_a x + \log_a y$
- $\log_a \frac{x}{y} = \log_a x \log_a y$
- $\log_a x^z = z \log_a x$

Furthermore, if b is a positive real \neq 1, then the formula of **base change** for logarithms holds:

$$
\log_b x = \frac{\log_a x}{\log_a b}
$$

The graphs of $y = a^x$ and $y = \log_a x$ (same base) are symmetric to each other with respect to the bisectrix of the first and third quadrant

Hence, if the point (p, q) belongs to the exponential graph, then (q, p) lies on the logarithm graph

Reason

The logarithm and the exponential satisfy the following relationships

$$
\bullet \ \mathsf{a}^{\log_{\mathsf{a}} y_0} = y_0 \quad \forall \ y_0 \in (0, +\infty)
$$

 $\log_a(a^{x_0}) = x_0 \quad \forall x_0 \in \mathbb{R}$

Type: $a^{f(x)} = k$ with $a > 0$, $a \neq 1$ and $k \in \mathbb{R}$ Solution: if $k > 0$, $f(x) = \log_a k$ (what if $k < 0$???)

Example

 $8 \cdot 2^{x-1} - 2^{x+1} = 16$

$$
\frac{8 \cdot 2^{x}}{2} - 2 \cdot 2^{x} = 16
$$

(4 - 2) \cdot 2^{x} = 16
2^{x} = 8
x = 3

Type: $a^{f(x)} = a^{g(x)}$ Solution: $f(x) = g(x)$

Example

 $2^{2x^2+x}-2^{x^3+2x}=0$

$$
2^{2x^{2}+x} = 2^{x^{3}+2x}
$$

\n
$$
x(2x + 1) = x(x^{2} + 2)
$$

\n
$$
x(-x^{2} + 2x - 1) = 0
$$

\n
$$
x(-(x - 1)^{2}) = 0
$$

\n
$$
x = 0 \text{ or } x = 1
$$

Type: $a^{f(x)} = b^{g(x)}$, $b > 0$, $b \ne 1$ Solution: write $b^{g(x)} = a^{g(x)log_a b}$, then apply log_a

Example

 $2^{x+1} = 5^{1-x}$

$$
2^{x+1} = 2^{(1-x)\log_2 5}
$$

\n
$$
x + 1 = (1 - x)\log_2 5
$$

\n
$$
x(1 + \log_2 5) = \log 5 - 1
$$

\n
$$
x = \frac{\log_2 5 - 1}{1 + \log_2 5}
$$

Another example

 $2^{x+1}5^{x-1}$ $rac{15^{x-1}}{3^x} = 2$ $2^{x+1}5^{x-1} = 2 \cdot 3^x$ $\ln 2^{x} + \ln 5^{x-1} = \ln 3^{x}$ $x \ln 2 + x \ln 5 - x \ln 3 = \ln 5$ $x = \frac{m \cdot 3}{\ln 2 + \ln 5 - \ln 3}$ $ln 5$

Exponential equations IV

Type: $f(a^x) = 0$ Solution: set $a^x = t$, then solve $f(t) = 0$

Example

 $2^{2-x} - 2^{3-x} + 2^x = 0$

$$
2^{2}2^{-x} - 2^{3}2^{-x} + 2^{x} = 0
$$

\n
$$
(2^{2} - 2^{3})2^{-x} = -2^{x}
$$
 substitution: $t = 2^{x}$
\n
$$
(2^{2} - 2^{3})/t = -t
$$

\n
$$
t^{2} = (2^{3} - 2^{2}) = 8 - 4 = 4 = 2^{2}
$$

\n
$$
2^{2x} = 2^{2}
$$

\n
$$
2x = 2
$$

\n
$$
x = 1
$$

Exponential inequalities

Type:
$$
a^{f(x)} > a^{g(x)}
$$
, $a > 0$, $a \neq 1$

\nSolution: if $a > 1$, $f(x) > g(x)$, if $a < 1$, $f(x) < g(x)$

Example

 $\frac{1}{7}$ $\left(\frac{1}{7}\right)^{x+1}\right)^{x} > \frac{1}{49}$ 49

$$
\left(\frac{1}{7}\right)^{(x+1)x} > \left(\frac{1}{7}\right)^2
$$

(x+1)x < 2
x²+x-2 < 0
-2 < x < 1

Type: $f(a^x) > c$ Solution: set $a^x = t$, and solve $f(t) > c$

Example

 $4^x - 2 \cdot 2^x - 3 \leq 0$

$$
2^{2x} - 2 \cdot 2^{x} - 3 \le 0
$$
 substitution $t = 2^{x}$
\n $t^{2} - 2t - 3 \le 0$
\n $-1 \le t \le 3$
\n $-1 \le 2^{x} \le 3$
\n $x \le \log_{2} 3$

Logarithmic equalities I

Type: $\log_a f(x) = b$ with $a > 0$, $a \neq 1$ and $b \in \mathbb{R}$ Solution: where $f(x) > 0$, $f(x) = a^b$

Warning

It's always necessary to determine the existence domain,

since log is defined only when its argument is strictly > 0

Example

$$
2+\log_2 x=\log_2 7
$$

$$
x = \log_2 7
$$
 $D = (0; +\infty)$

$$
\log_2 x = \log_2 7 - 2
$$

\n
$$
x = 2^{\log_2 7 - 2}
$$

\n
$$
x = \frac{7}{4} \text{ (valid, because } \in D)
$$

 $D = (0; +\infty)$

Example

 $\log_4(x+6)+\log_4$

 $log_4(x^2+6x) = 2$ $x^2 + 6x - 16 = 0$ $x =$ $\int -8$ (not valid) 2

Logarithmic equalities II

Type: $\log_a f(x) = \log_a g(x)$ Solution: where $f(x) > 0$ and $g(x) > 0$, $f(x) = g(x)$

Example

 $\log_2 x + \log_{\frac{1}{2}}(x-1) = 3$ D = (1; + ∞)

$$
log_2 x = log_2(x-1) + 3
$$

\n
$$
2^{log_2 x} = 2^{log_2(x-1)+3}
$$

\n
$$
x = (x-1)2^3
$$

\n
$$
x = 8x - 8
$$

\n
$$
7x = 8
$$

\n
$$
x = \frac{8}{7} (ok)
$$

Example

 $log_2(x + 1) = log_4$

Logarithmic equalities III

Type: $f(log_a x) = 0$ Solution: set $\log_a x = t$, then solve $f(t) = 0$

Example

 $log_2^2 x - 2 log_2$

$$
\log_{2}^{2} x - 2 \log_{2} x - 3 = 0
$$
 substitution $t = \log_{2} x$
\n $t^{2} - 2t - 3 = 0$
\n $(t - 3) (t + 1) = 0$
\n $t = -1 \text{ or } 3$
\n $\log_{2} x = -1 \text{ or } 3$
\n $x = 1/2 \text{ or } x = 8$

 $D = (0; +\infty)$

Type: $\log_a f(x) > \log_a g(x)$ Solution: if $a > 1$, $f(x) > g(x)$; if $a < 1$, $f(x) < g(x)$

Example

 $log_2 x - log_2 3 < log_2$ $D = (0; +\infty)$ $log_2 \frac{x}{3}$ $\frac{\pi}{3}$ < $\log_2(x+2)$ x $\frac{x}{3}$ < x + 2 $x > -3$

and keeping the domain into account, the solution is $x > 0$

Example

$$
\log_2(x^2+1) > \log_2(2x+4)
$$

$$
(2x+4) \qquad D = (-2;+\infty)
$$

$$
\begin{array}{rcl} \log_2(x^2+1) > & \log_2(2x+4) \\ x^2+1 > & 2x+4 \\ x^2-2x-3 > & 0 \\ (x-3)(x+1) > & 0 \\ x < -1 \text{ or } x > & 3 \end{array}
$$

and because of the domain, the solution is $-2 < x < -1$ or $x > 3$

Logarithmic inequalities II

Type: $f(\log x) > c$ Solution: set $log x = t$, and solve $f(t) > c$

Example $log_2^3 x - 2 log_2$ $D = (0; +\infty)$ $log_2^3 x - 2 log_2$ $x > 0$ substitution $t = \log_2 x$ $t^3 - 2t > 0$ $t(t^2-2) > 0$ $\sqrt{2}$ or $-\sqrt{2} < t < 0$ $x > 2^{\sqrt{2}}$ or $2^{-\sqrt{2}} < x < 1$