# Equations and Inequalities

#### Bridging course in mathematics

Lesson 3







#### 2 Inequalities

# 3 Types

- linear
- quadratic
- fractional
- with absolute values
- irrational

# Understanding equations



The zeroes of a map f, ie the elements in dom f at which f takes the value zero, are the solutions to the equation

 $f(\mathbf{x})=\mathbf{0}$ 

- The elements in the domain at which fassumes a value  $k \in \mathbb{R}$  are the solutions to f(x) = k
- An equation looks like

 $f(\mathbf{x}) = g(\mathbf{x})$ 

in its most general form



#### Definition

Two equations are said **equivalent** if every solution of the former solves the latter, and conversely, if every solution of the latter also solves the former

#### Properties

An equation is transformed into an equivalent one by

- adding or subtracting to both sides the same function defined over all of ℝ;
- multiplying or dividing both sides by the same map defined over all of  ${\mathbb R}$  and never zero

#### Remark

By adding (or multiplying by) a function *h* that is <u>not</u> defined <u>everywhere</u> on  $\mathbb{R}$  we might obtain a non-equivalent equation



# Inequalities



Determining where a map f is positive, that is to say, finding the subset of the domain where f assumes positive values, means solving f(x) > 0f(x) > 0Similarly, one may find the sets where the map is negative f(x) < 0, $f(\mathbf{x}) \geq 0,$ non-negative or non-positive  $f(\mathbf{x}) < 0$ General form of an inequality g(x) $f(x) \geq g(x)$ 

(or with  $\leq, >, <$  )

 $f(\mathbf{x})$ 

 $f(\mathbf{x})$ 

 $f(\mathbf{x})$ 

 $f(x) \leq 0$ 

 $f(x) \geq g(x)$ 

X

#### Definition

Two inequalities are equivalent if every solution of the former solves the latter, and conversely, if every solution of the latter also solves the former

Consider a map h(x) defined on the whole  $\mathbb{R}$ 

- f(x) < g(x) is equivalent to  $f(x) \pm h(x) < g(x) \pm h(x)$ ;
- if  $h(x) > 0 \quad \forall x \in \mathbb{R}$ ,

 $f(x) \leq g(x)$  is equivalent to  $\begin{cases} f(x) h(x) \leq g(x) h(x) \text{ or } \\ f(x)/h(x) \leq g(x)/h(x) \end{cases}$ 

• if  $h(x) < 0 \quad \forall x \in \mathbb{R}$ ,  $f(x) \leq g(x)$  is equivalent to  $\begin{cases} f(x) h(x) > g(x) h(x) \text{ or } \\ f(x) / h(x) > g(x) / h(x) \end{cases}$ 

# Degree 1





Equations and Inequalities

7/17

# Degree 2



Consider the quadratic expression

 $ax^2 + bx + c$ ,  $a, b, c \in \mathbb{R}$   $a \neq 0$ 

and define the discriminant  $\Delta$ 

 $\Delta = b^2 - 4ac$ 

#### Equations

$$ax^2 + bx + c = 0$$

$$\begin{array}{c|c} \Delta > 0 & x_{1/2} = \frac{-b \pm \sqrt{\Delta}}{2a} \\ \hline \Delta = 0 & x = \frac{-b}{2a} \\ \hline \Delta < 0 & \emptyset \end{array}$$

#### Inequalities

$$ax^2 + bx + c > 0$$

|              | <i>a</i> > 0                                                                                               | <i>a</i> < 0                                                            |
|--------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| $\Delta > 0$ | $\left(-\infty, \frac{-b-\sqrt{\Delta}}{2a}\right) \cup \left(\frac{-b+\sqrt{\Delta}}{2a}, +\infty\right)$ | $\left(\frac{-b-\sqrt{\Delta}}{2a}, \frac{-b+\sqrt{\Delta}}{2a}\right)$ |
| $\Delta = 0$ | $\mathbb{R}\setminusig\{-rac{b}{2a}ig\}$                                                                  | Ø                                                                       |
| $\Delta < 0$ | $\mathbb{R}$                                                                                               | Ø                                                                       |

Parabolas





# **Fractions**





#### Warning!

The ratio  $\frac{f(x)}{g(x)}$  isn't defined at points where the denominator g(x) vanishes These must be excluded from the set of solutions

Bridging course

Equations and Inequalities

Lesson 3

10/17

# Graphs of |f(x)| and f(|x|)







# $\left|f\left(x\right)\right|=g\left(x\right)$

Solved by the union of the solutions of two systems

$$\begin{cases} x : \left\{ \begin{array}{c} f(x) = g(x) \\ f(x) \ge 0 \end{array} \right\} \cup \begin{cases} x : \left\{ \begin{array}{c} f(x) = -g(x) \\ f(x) < 0 \end{array} \right\} \end{cases}$$

# Case: |f(x)| = c

- c < 0: has no solution
- c = 0: is equivalent to f(x) = 0
- c > 0: solutions given by the union of the solutions of two systems

$$\begin{cases} x : \left\{ \begin{array}{c} f(x) = c \\ f(x) \ge 0 \end{array} \right\} \cup \begin{cases} x : \left\{ \begin{array}{c} f(x) = -c \\ f(x) < 0 \end{array} \right. \end{cases}$$



# $\left|f\left(x\right)\right|\leq g\left(x\right)$

Solved by the union of the solutions of two systems

$$\begin{cases} x : \begin{cases} f(x) \le g(x) \\ f(x) \ge 0 \end{cases} \end{cases} \cup \begin{cases} x : \begin{cases} f(x) \ge -g(x) \\ f(x) < 0 \end{cases}$$

# Case: $|f(x)| \leq c$

c < 0: hasn't got solutions

$$c = 0$$
: is equivalent to the equation  $f(x) = 0$ 

c > 0: is equivalent to the system  $\begin{cases} f(x) \le c \\ f(x) \ge -c \end{cases}$ 

# Case: $|f(x)| \ge c$

 $c \leq 0$ : has solutions given by any  $x \in \mathbb{R}$ 

c > 0: is solved by the union of the solutions of two inequalities

 $\{x : f(x) \ge c\} \cup \{x : f(x) \le -c\}$ 

# Irrational equations



#### Equalities

To solve

$$\sqrt[n]{f(x)} = \sqrt[m]{g(x)}$$

- o determine existence domain
- raise to the right power = lcm(n, m)

#### Example

$$\sqrt[3]{x^3+4} - 1 = x$$

$$\sqrt[3]{x^3 + 4} = x + 1$$
  

$$x^3 + 4 = (x + 1)^3$$
  

$$x_1 = \frac{-1 + \sqrt{5}}{2} \text{ and } x_2 = \frac{-1 - \sqrt{5}}{2}$$

 $D = \mathbb{R}$ 

# Irrational equations



#### Examples

| $\sqrt{2x-1} = x-2$ |                           |     | $D=[rac{1}{2},+\infty)\cap [2,+\infty)$ |
|---------------------|---------------------------|-----|------------------------------------------|
|                     | 2 <i>x</i> – 1            | =   | $(x - 2)^2$                              |
|                     | <i>x</i> <sub>1</sub> = 1 | and | $x_2 = 5$                                |
|                     | not valid                 |     | valid                                    |

$$\sqrt{x-1} + \sqrt{x+1} = \sqrt{6-x} \qquad D = [1,6]$$

$$2\sqrt{(x-1)(x+1)} = 6 - 3x \qquad \tilde{D} = [1,2]$$

$$4x^2 - 4 = 36 - 36x + 9x^2$$

$$x_1 = \frac{18 - 2\sqrt{31}}{5} \text{ and } x_2 = \frac{18 + 2\sqrt{31}}{5}$$
valid not valid

(

Behaviour of

 $\sqrt[n]{f(x)} < \sqrt[m]{g(x)}$ 

depends on parity of roots

For simplicity let's consider m = 1

#### Odd roots

 $\sqrt[2k+1]{f(x)} < g(x) \quad \Longleftrightarrow \quad f(x) < g(x)^{2k+1}$ 

# Example $\sqrt[3]{2-x} = x$ $D = \mathbb{R}$ $2-x = x^{3}$ x = 1

# Irrational inequalities



#### Even roots

$$\sqrt[2k]{f(x)} \leqslant g(x) \iff \begin{cases} f(x) \ge 0\\ g(x) > 0\\ f(x) < g(x)^{2k} \end{cases}$$

$$\sqrt[2k]{f(x)} \geqslant g(x) \iff \begin{cases} g(x) < 0\\ f(x) \ge 0 \end{cases} \text{ or } \begin{cases} g(x) \ge 0\\ f(x) > g(x)^{2k} \end{cases}$$

#### Example

 $\sqrt{x-1} > 12-2x$ 

$$\begin{cases} 12 - 2x < 0 \\ x - 1 \ge 0 \end{cases} \text{ or } \begin{cases} 12 - 2x \ge 0 \\ x - 1 > (12 - 2x)^2 \end{cases}$$
$$(6, +\infty) \quad \cup \quad (5, 29/4) \\ x \in \quad (5, +\infty) \end{cases}$$