Real functions of one real variable

Bridging course in mathematics

Lesson 2

Outline

Elementary functions

- polynomial maps
- rational maps
- irrational maps

3 Transformations in the plane and graphs

Functions / maps

A real map of one real variable

 $f:\mathbb{R}\to\mathbb{R}$

is rule that associates to a number $x \in \mathbb{R}$ at most one number $y \in \mathbb{R}$

Graph

The graph of a function f(x) is the set of

$$(x, y) \in \mathbb{R} \times \mathbb{R} = \mathbb{R}^2$$
 such that $y = f(x)$

dom(f) = {x ∈ ℝ : f is well defined } is the domain
im(f) = {y ∈ ℝ : ∃x ∈ dom(f) : y = f(x)} is the range

Example: hyperbola

- f(x) = 1/x
 - dom $f = \mathbb{R} \setminus \{0\}$
 - im $f = \mathbb{R} \setminus \{0\}$

x

ν

Polynomial functions

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x + a_0$$

 $a_0,\ldots,a_n\in\mathbb{R}$

• dom $(f) = \mathbb{R}$

Special cases:

- if $n = 0 \rightsquigarrow$ constant maps
- if $n = 1 \rightsquigarrow$ linear or affine maps
- if $n = 2 \rightsquigarrow$ quadratic maps

• if $a_n = 1$, $a_{n-1} = \ldots = a_0 = 0 \iff$ power functions $f(x) = x^n$

Polynomial functions

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x + a_0$$

 $a_0,\ldots,a_n\in\mathbb{R}$

• dom $(f) = \mathbb{R}$

Special cases:

- if $n = 0 \rightsquigarrow$ constant maps
- if $n = 1 \iff$ linear or affine maps
- if $n = 2 \rightsquigarrow$ quadratic maps

• if $a_n = 1$, $a_{n-1} = \ldots = a_0 = 0 \iff$ power functions $f(x) = x^n$

Constant maps

 $f(x) = q, \quad q \in \mathbb{R}$ $\operatorname{dom}(f) = \mathbb{R} \quad \operatorname{im}(f) = \{q\}$

 $f(x) = mx + q, \quad m, q \in \mathbb{R}$

m = slope q = y-intercept

 $\operatorname{dom}(f) = \mathbb{R}$ $\operatorname{im}(f) = \mathbb{R} \quad (m \neq 0)$

Quadratic polynomials

$$\begin{split} f(x) &= ax^2 + bx + c, \quad a, b, c \in \mathbb{R} \quad a \neq 0 \\ \Delta &= b^2 - 4ac \quad \text{discriminant} \\ V &= (-\frac{b}{2a}; -\frac{\Delta}{4a}) \quad \text{vertex} \end{split}$$

Intersections with x-axis f(x) = 0 $\Delta > 0 \quad x_{1/2} = \frac{-b \pm \sqrt{\Delta}}{2a}$ $\Delta = 0 \quad x = -\frac{b}{2a}$ $\Delta < 0 \qquad \emptyset$

Convexity

Parabolas

Rational maps Given polynomials p(x) and q(x), $f(x) = \frac{p(x)}{q(x)}$ has dom(f) = $\mathbb{R} \setminus \{x : q(x) = 0\}$ Intersections with the x-axis Determined by the points where the numerator vanishes $x \in \mathbb{R} : p(x) = 0$

q(x)p(x)p(x)q(x)

Positivity

f(x) > 0 on the intervals where numerator and denominator have the same sign

Bridging course

Real functions of one real variable

Inverse powers

$$f(x) = \frac{1}{x^n}, \quad n \in \mathbb{N}$$

$$\mathsf{dom}(f) = \mathbb{R} \setminus \{0\} \quad \mathsf{Q} = (1, 1)$$

Lesson 2

11 / 17

Moving graphs

Horizontal translation				Vertical translation			
$y = f(x) \rightsquigarrow y = f(x - p)$			$y = f(x) \rightsquigarrow y = f(x) + q$				
		direction				direction	
	<i>p</i> > 0	to the right			<i>q</i> > 0	upwards	
	<i>p</i> < 0	to the left			<i>q</i> < 0	downwards	

Symmetries

Symmetries

Absolute value function

Absolute value

$$y = |x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

Properties								
	dom(f)	im(f)	symmetry					
	\mathbb{R}	$\mathbb{R}^+ \cup \{0\}$	f(-x)=f(x)					
_	114	™ ○ [○]	$I(\mathbf{x}) = I(\mathbf{x})$					

