Polynomials

Bridging course in mathematics

Lesson 1

Bride	ina	001	Irco
Diluu	III IU	COL	ມວບ

Polynomials

Polynomial operations

\mathbb{R} , \mathbb{N} , \mathbb{Z} , \mathbb{Q}

We shall typically work with real numbers, whose set is denoted by $\mathbb R$

The set of real numbers contains important subsets:

- natural numbers, denoted by $\mathbb{N} = \{0, 1, 2, 3, ...\}$
- integer numbers, denoted by $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$
- rational numbers, denoted by \mathbb{Q} : a rational number can be written as ratio m/n of two integers, with $n \neq 0$

Definition

 A real polynomial in the variable x is an algebraic expression of the form

$$A_n(x) = a_0 + a_1x + \dots + a_nx^n$$

where $a_0, a_1, ..., a_n$ are real numbers (called the **coefficients** of the polynomial) and $a_n \neq 0$

- The summands are said monomials
- The **degree** of a polynomial is the maximum power among the non-zero monomials appearing in the expression

Property

Two polynomials are equal if they have the same degree and the coefficients of the monomials with equal degree coincide

Adding polynomials

The **sum** of two polynomials is the polynomial obtained by adding the coefficients of the monomials of same degree

$$A_n(x) + B_m(x) = (a_0 + b_0) + (a_1 + b_1)x + ... + (a_m + b_m)x^m$$

$$(x^{2} + 2x - 5) + (x^{3} - x + 2) =$$

(0x³ + x² + 2x - 5) + (x³ + 0x² - x + 2) =
(0 + 1)x³ + (1 + 0)x² + (2 - 1)x + (-5 + 2) =
x³ + x² + x - 3

Product

Multiplying polynomials

The product is the polynomial of the form

$$A_n(x) \cdot B_m(x) = C_{n+m}(x) = c_0 + c_1 x + ... + c_{n+m} x^{n+m},$$

whose coefficients are given by:

$$c_0 = a_0 b_0, \quad c_1 = a_1 b_0 + a_0 b_1,$$

 $c_k = a_0 b_k + a_1 b_{k-1} + a_2 b_{k-2} + \dots + a_{k-1} b_1 + a_k b_0$

In practice

$$(x-1)(x^{2} + x + 1) =$$

$$x^{2}(x-1) + x(x-1) + (x-1) =$$

$$x^{3} - x^{2} + x^{2} - x + x - 1 =$$

$$x^{3} - 1$$

Dividing polynomials

Given polynomials $A_n(x)$, $B_m(x)$ of degrees $n \ge m$, there exist polynomials Q(x) and R(x), called **quotient** and **remainder**, such that:

- the degree of R(x) is less than *m*;
- $A_n(x) = B_m(x) Q(x) + R(x)$

Definition

If R(x) = 0, one says that $B_m(x)$ divides $A_n(x)$

Therefore

The ratio of $A_n(x)$ and $B_m(x)$ can always be written as

$$\frac{A_n(x)}{B_m(x)} = Q(x) + \frac{R(x)}{B_m(x)}$$

where deg $R < \deg B_m$

Bridging course

The method for dividing two polynomials consists in dividing monomials by decreasing degree

Example

Let's divide

$$A(x) = 2x^4 + x^3 - x + 2$$

by
$$B(x) = x^2 + 3$$

D · ·		
Brido	una	course
DIIUU	III I U	COUISE

2 <i>x</i> ⁴	+ x ³	+0 <i>x</i> ²	- <i>x</i>	+2	<i>x</i> ²	+3
2 <i>x</i> ⁴		$+6x^{2}$			2 <i>x</i> ²	+ <i>x</i>
	$+x^3$	$-6x^{2}$	- <i>x</i>	+2		†
	$+x^3$		+3 <i>x</i>		Q	(<i>x</i>)
		$-6x^{2}$	-4 <i>x</i>	+2		
					$\leftarrow R$	(<i>x</i>)

2 <i>x</i> ⁴	+ x ³	+0 <i>x</i> ²	- <i>X</i>	+2	<i>x</i> ²		+3
2 <i>x</i> ⁴		+6 <i>x</i> ²			2 <i>x</i> ²	+ x	-6
	$+x^3$	$-6x^{2}$	- <i>X</i>	+2		\uparrow	
	$+x^3$		+3 <i>x</i>		G	?(x)	
		$-6x^{2}$	-4x	+2			
		$-6x^{2}$		-18			
			-4 <i>x</i>	+20	← F	?(x)	
/ E	$\frac{A(x)}{B(x)} =$	Q(x) +	$\frac{R(x)}{B(x)} =$	$= 2x^2 + x$	- 6 + -	-4x + 3 $x^2 + 3$	20 3

Factorization

Factorizing a polynomial means transforming it into a product

Example

$$x^2 - 5x + 6 = (x - 3)(x - 2)$$

A polynomial that cannot be factorized is called irreducible;

<u>Real</u> polynomials of degree 1 are irreducible, and also those of degree 2 with negative discriminant.

Useful methods

Finding an overall common factor

$$x^{4} - 3x^{3} + 5x^{2} = x^{2} (x^{2} - 3x + 5)$$

Finding a partial factor

$$x^4 + a^2x^2 + b^2x^2 + a^2b^2 = x^2(x^2 + a^2) + b^2(x^2 + a^2) =$$

$$(x^2 + a^2)(x^2 + b^2)$$

Useful properties

Factor / remainder theorem

(x - c) divides the polynomial $A_n(x)$ if and only if $A_n(c) = 0$

Consequences

- The binomial xⁿ aⁿ is always divisible by x a;
 if n is even, xⁿ aⁿ is also divisible by x + a
- The binomial $x^n + a^n$ is divisible by x + a if *n* is odd;

if *n* is even, $x^n + a^n$ is neither divisible by x + a nor by x - a

Remark

For polynomials with integer coefficients:

- the possible integer roots should be searched for among the factors with sign of the constant term, including 1;
- the possible rational roots should be looked for among the rationals of the form $\pm p/q$, where *p* divides the constant term, and *q* divides the leading coefficient

Polynomials